Cross Validation
Cross Validation이란 모델을 평가하는 하나의 방법이다
- K-겹 교차검증(K-fold Cross Validation)을 많이 활용한다
- K-겹 교차검증
- K-겹 교차 검증은 모든 데이터가 최소 한 번은 테스트셋으로 쓰이도록 한다

Step
from sklearn.model_selection import KFold
n_splits = 5
kfold = KFold(n_splits=n_splits, random_state=42)
df.head()

X = np.array(df.drop('MEDV', 1))
Y = np.array(df['MEDV'])
lgbm_fold = LGBMRegressor(random_state=42)
# fold 별로 성능 확인하기
i = 1
total_error = 0
for train_index, test_index in kfold.split(X):
x_train_fold, x_test_fold = X[train_index], X[test_index]
y_train_fold, y_test_fold = Y[train_index], Y[test_index]
lgbm_pred_fold = lgbm_fold.fit(x_train_fold, y_train_fold).predict(x_test_fold)
error = mean_squared_error(lgbm_pred_fold, y_test_fold)
print('Fold = {}, prediction score = {:.2f}'.format(i, error))
total_error += error
i+=1
print('---'*10)
print('Average Error: %s' % (total_error / n_splits))
